


## **HEATILE® TECH-F**

#### SCHEDA TECNICA SISTEMA IDRONICO FLOTTANTE A PANNELLI RADIANTI

#### **VOCI DI CAPITOLATO**

Sistema *idronico* per impianti radianti a secco realizzato con pannelli radianti in materiale composito. I moduli sono in dimensioni da 59,1x59,1 cm o 59,1x118,2 cm con spessore di 13 mm, composti da un pannello strutturale con superficie in acciaio, una serpentina di circuito in rame con attacchi rapidi in ottone e giunti idraulici ad o-ring multiplo in EPDM (etilene-propilene-diene monomero) con sistema meccanico di aggancio.

L'isolamento termico è conferito da uno strato di poliuretano da 150 Kg/m³ di spessore 11 mm (5 mm in prossimità dei tubi) e un tappetino insonorizzante in neoprene da 40 Kg/m³ di spessore 1,5 mm con giunti di frazionamento in neoprene su ogni lato del modulo (ogni 59-118 cm).



#### **DESCRIZIONE PRODOTTO**

Il modulo radiante è estremamente leggero (12.5 Kg/m²) e sottilissimo (13 mm).

I moduli vengono innestati tra loro e resi solidali attraverso un sistema di aggancio meccanico frontale e laterale a formare un pavimento flottante dalle elevate caratteristiche meccaniche.

Viene posato sul massetto o sui pavimenti preesistenti in caso di ristrutturazione evitando inutili costi di demolizione e può essere rivestito con i più comuni materiali di rivestimento (gres, ceramica, parquet, moquette, LVT, PVC, ecc.). Il sistema coniuga estrema facilità e velocità di posa con eccezionali performance di resa termica, il che lo rende estremamente versatile, sia nel recupero di vecchi edifici sia nelle nuove costruzioni.

È particolarmente indicato in caso di installazione flottante anche del rivestimento offrendo l'accessibilità all'impianto in qualsiasi momento.

Può anche essere installato su sottofondi autoportanti quali massetti secchi o sottofondi granulari con pannelli in fibra di legno, massetti in calcestruzzo livellati. In generale, richiede un sottofondo liscio e livellato (discrepanze tollerate entro 3 mm per metro lineare).

L'eliminazione del massetto di diffusione tipico dei sistemi tradizionali ed i materiali ad elevata conduttività termica rendono Heatile<sup>®</sup> TECH-F unico dal punto di vista dell'inerzia termica che è bassissima.

Heatile® TECH-F è in grado di sopportare temperature di esercizio fino a 80°C ad una pressione massima di 8 bar.

La configurazione dei circuiti degli impianti viene realizzata con moduli in grado di innestarsi tra loro in tutte le direzioni (con moduli curvi, dritti, ecc.) permettendo così di creare circuiti molto complessi e di soddisfare le esigenze di riscaldamento di qualsiasi ambiente.

6,12 m² è la superficie massima indicativa di ogni singolo circuito (corrispondente a ca. 17 moduli) che può essere sdoppiato con l'apposito modulo. Heatile® TECH-F si collega al collettore tramite il sistema di connessione filo pavimento "H-Link" o tramite connessioni in tubo multistrato per distanze più elevate.



Eventuali strati di coibentazione aggiuntiva e provvedimenti per abbattimenti acustici possono essere realizzati al di sotto del sistema Heatile® TECH-F purché realizzati con materiali sufficientemente rigidi tali da non compromettere la rigidità del sistema.

Per la posa in sovrapposizione con i materiali di finitura fare riferimento alle istruzioni di posa.

Si consiglia di montare degassatore e defangatore magnetico in centrale termica per il mantenimento dell'impianto.



# **HEATILE® TECH-F**

### SCHEDA TECNICA SISTEMA IDRONICO FLOTTANTE A PANNELLI RADIANTI

| DATI GENERALI MODULO RADIANTE                  |                |                        |  |  |  |  |  |
|------------------------------------------------|----------------|------------------------|--|--|--|--|--|
| Liquido di esercizio                           |                | Acqua                  |  |  |  |  |  |
| Spessore totale                                | mm             | 13                     |  |  |  |  |  |
| Dimensione effettiva modulo singolo            | mm             | 591 x 591              |  |  |  |  |  |
| Superficie effettiva modulo singolo            | m²             | 0.35                   |  |  |  |  |  |
| Dimensioni effettiva modulo doppio             | mm             | 591 x 1182             |  |  |  |  |  |
| Superficie effettiva modulo doppio             | m <sup>2</sup> | 0.70                   |  |  |  |  |  |
| DATI TECNICI MODULO RADIANTE                   |                |                        |  |  |  |  |  |
| Spessore lastra radiante acciaio               | mm             | 1                      |  |  |  |  |  |
| Spessore isolante poliuretano (1)              | mm             | 10,5                   |  |  |  |  |  |
| Spessore tappetino insonorizzante in neoprene  | mm             | 1,5                    |  |  |  |  |  |
| Spessore tubazione in Rame                     | mm             | 0,75                   |  |  |  |  |  |
| Sezione tubazione ovale in Rame                | mm             | 7 x 18                 |  |  |  |  |  |
| Densità (poliuretano)                          | Kg/m³          | 150                    |  |  |  |  |  |
| Resistenza alla diffusione del vapore          | μ              | ∞                      |  |  |  |  |  |
| Isolamento termico lato inferiore              | W/mK           | 0.022                  |  |  |  |  |  |
| Pressione massima ammessa                      | Bar            | 8                      |  |  |  |  |  |
| Temperatura di esercizio                       | °C             | +5 / +80               |  |  |  |  |  |
| Coefficiente di dilatazione termica acciaio    | mm/m/°C        | 1,2 x 10 <sup>-5</sup> |  |  |  |  |  |
| Coefficiente di dilatazione termica Fibrogesso | %/K            | 0.001                  |  |  |  |  |  |
| Conduttività termica acciaio                   | W/mK           | 60                     |  |  |  |  |  |
| Conduttività termica Fibrogesso                | W/mK           | 0,32                   |  |  |  |  |  |
| O'rings                                        |                | EPDM perossidico 70 CG |  |  |  |  |  |
| DATI TECNICI MODULO DI COMPENSAZIONE           |                |                        |  |  |  |  |  |
| Gessofibra Fermacell                           | mm             | 12,5                   |  |  |  |  |  |
| Dimensione modulo gessofibra                   | mm             | 590 x 1.000            |  |  |  |  |  |
| Densità nominale                               | mm             | 1.150 ±50kg/m³         |  |  |  |  |  |
| Durezza                                        | N/mm²          | 30                     |  |  |  |  |  |
| Conduttività termica λ                         | W/mK           | 0,32                   |  |  |  |  |  |
| Reazione al fuoco                              | EN13501-1      | A2-s1,d0               |  |  |  |  |  |
| Aumento spessore dopo 24h in acqua             |                | < 2%                   |  |  |  |  |  |
| (¹) al di sotto del condotto di circuito 5 mm  |                |                        |  |  |  |  |  |

<sup>(</sup>¹) al di sotto del condotto di circuito 5 mm

|                                                           | DATI EMISSIONE TERMICA RISCALDAMENTO (rivestimento gres) |         |                      |                      |                      |  |  |
|-----------------------------------------------------------|----------------------------------------------------------|---------|----------------------|----------------------|----------------------|--|--|
| Emissione termica in riscaldamento                        |                                                          | Passo   | 117 W/m <sup>2</sup> | 171 W/m <sup>2</sup> | 225 W/m <sup>2</sup> |  |  |
| (Temperatura ambiente 20°C)                               |                                                          | 9,5 cm  | (Tm 35 °C)           | (Tm 37 °C)           | (Tm 42 °C)           |  |  |
| Emissione termica in riscaldamento                        |                                                          | Passo   | 117 W/m <sup>2</sup> | 171 W/m <sup>2</sup> | 225 W/m <sup>2</sup> |  |  |
| (Temperatura ambiente 20°C)                               |                                                          | 12,5 cm | (Tm 35 °C)           | (Tm 37 °C)           | (Tm 42 °C)           |  |  |
| DATI EMISSIONE TERMICA RAFFRESCAMENTO (rivestimento gres) |                                                          |         |                      |                      |                      |  |  |
| Emissione termica in raffrescamento                       |                                                          |         |                      | 56 W/m <sup>2</sup>  | 99 W/m <sup>2</sup>  |  |  |
| (temperatura ambiente 25°C)                               |                                                          |         |                      | (Tm 19 °C)           | (Tm 15 °C)           |  |  |

(Tm= Temperatura media di mandata) NB. IL RAFFRESCAMENTO DEVE SEMPRE ESSERE INTEGRATO CON SISTEMI DI DEUMIDIFICAZIONE IN GRADO DI AUMENTARE IL CARICO FRIGORIFERO

| COLLA PER RIVESTIMENTO SU | IPERIORE | PRIMER              | STUCCO PER FUGHE | PRODUTTORE    |
|---------------------------|----------|---------------------|------------------|---------------|
| H40 NO LIMITS             | Gres     | KERAGRIP ECO        | FUGABELLA COLOR  | KERAKOLL      |
| KERAFLEX MAXI S1          | Gres     | ECO PRIM GRIP       | ULTRACOLOR PLUS  | MAPEI         |
| AZ 59 FLEX                | Gres     | PRIMERTEK 101       | FASSAFIL         | FASSA BORTOLO |
| ADESIVER HERCULES         | Legno    | PRIMER Diluente APA | n.n.             | CHIMIVER      |
| ULTRABOND P913 2K PLUS    | Legno    | PRIMER KL           | n.n.             | MAPEI         |